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Abstract

We discuss a model of the G�odel Universe as Lie groups with
left-invariant Lorentz metric for simply connected four-dimensional Lie
group, the Iwasawa decomposition for semisimple Lie groups, and

left-invariant Lorentz metrics on SL(2,R) and ˜SL(2,R), following
K.-H. Neeb. Also we show that the isometry between two non-isomorphic
sub-Riemannian Lie group, constructed by A. Agrachev and D. Barilari, is
induced by some Iwasawa decomposition of SL(2,R).



Introduction

Kurt G�odel in paper [1] of 1949 introduced the Lorentz metric of the
signature (+,−,−,−) on the space R4. The G�odel Universe (space-time)
S is a solution of the General Relativity Theory (the Einstein gravitation
equations).

Professor Karl�Hermann Neeb wrote to the author that it is possible to
realize the G�odel Universe otherwise and sent an electronic version of his
joint with Joachim Hilgert book [2], where in section 2.7 �G�odel's
cosmological model and universal covering of SL(2,R)� is suggested a
left-invariant Lorentz metric on this Lie group.



In this connection, it is useful to mention the paper [3] by A. Agrachev
and D. Barilari, where the autors obtained a full classi�cation of
left-invariant sub-Riemannian metrics on three-dimensional Lie groups
and �explicitly �nd a sub-Riemannian isometry between nonisomorphic
Lie groups SL(2,R) and SO(2)×A+(R)� [3].

The existence of such isometry was indicated ealier in [4] by Falbel and
Gorodski.

In a message to the author, Professor Neeb explains this by a
di�eomormism of Lie groups SL(2,R) and SO(2)×A+(R) by means of
the Iwasawa decomposition for SL(2,R). Let us cite now only Theorems
6.5.1 and 9.1.3 from [5].



In p. 10.6.4 (i) from [5] are indicated the isomorphisms of Lie algebras:

sl(2,R) ∼= su(1, 1) ∼= so(2, 1) ∼= sp(1,R).

Then simply connected Lie groups with these Lie algebras are isomorphic.

In Theorem 3 we prove some properties of special left-invariant Lorentz
metrics on three-dimensional Lie groups. Also we show in Proposition 3
that the isometry between two non-isomorphic sub-Riemannian Lie
group, constructed by A. Agrachev and D. Barilari, is induced by some
Iwasawa decomposition of SL(2,R).



The Goedel Universe as a Lie group

with left-invariant Lorentz metric

G�odel introduced in [1] his space-time S as R4 with the linear element

ds2 = a2
(
dx20 + 2ex1dx0dx2 +

e2x1

2
dx22 − dx21 − dx23

)
, a > 0. (1)

G�odel noticed that it is possible to rewrite this quadratic form in view of

ds2 = a2
[
(dx0 + ex1dx2)

2 − dx21 −
e2x1

2
dx22 − dx23

]
, (2)

which shows obvious that its signature is equal everywhere to
(+,−,−,−).

We shall assume that a = 1.



G�odel noticed in [1] that on (S, ds2) acts simply transitively a
four-dimensional isometry Lie group. It is easy to see that such action
could be written as

y0 = x′0 + x0, y1 = x′1 + x1, y2 = x′2e
−x1 + x2, y3 = x′3 + x3 (3)

with arbitrary x0, x1, x2, x3 ∈ R. This implies that corresponding Lie
group G is the simplest simply connected noncommutative
four-dimensional Lie group of the view

G ∼= [(R,+)×G2]× (R,+) := G3 × (R,+), (4)

where G2 is unique up to isomorphism, necessary isomorphic to R2,
two-dimensional noncommutative Lie group. The Lie group G2 (G3) is
isomorphic to the Lie group A+(R) ((R,+)×A+(R)), where A+(R) is
the group of preserving orientation a�ne transformations of (R,+).



In case under consideration, identifying the quad (x′0, x
′
1, x

′
2, x

′
3) with the

vector (x′2, x
′
1, x

′
0, x

′
3, 1)

T , where T is the sign of transposition, the action
of the group G on R4 by formula (3) has the view
(y2, y1, y0, y3, 1)

T = A(x′2, x
′
1, x

′
0, x

′
3, 1)

T , where

A =


e−x1 0 0 0 x2
0 1 0 0 x1
0 0 1 0 x0
0 0 0 1 x3
0 0 0 0 1

 . (5)

Under this the equality

A(0, 0, 0, 0, 1)T = (x2, x1, x0, x3, 1)
T (6)

sets the bijection of the group G onto R4 and the unit of G corresponds
to the zero-vector (0, 0, 0, 0) ∈ R4.



On base of this, (4) and (1), we can identify (S, ds2) with the Lie group
G equipped with left-invariant Lorentz metric. Let

e0 =
∂

∂x0
(0), e1 =

∂

∂x1
(0), e2 =

∂

∂x2
(0), e3 =

∂

∂x3
(0))

be the basis of the Lie algebra g of the Lie group G at the unit of G,
corresponding to coordinates (x0, x1, x2, x3). Then, according to what
has been said and (1), all nonzero components of the linear element ds2

with respect to this basis are equal to

g00 = 1, g02 = g20 = 1, g22 =
1

2
, g11 = −1, g33 = −1. (7)

According to (6), the Lie subgroup G3 can be identi�ed with the matrix
Lie group 

e−x1 0 0 x2
0 1 0 x1
0 0 1 x0
0 0 0 1

 , (x0, x1, x2) ∈ R3. (8)



It is obvious that (S, ds2) = (S0, ds
2
0)× (S1, ds

2
1), where S0 = R3,

S1 = R,

ds20 = dx20 + 2ex1dx0dx2 +
e2x1

2
dx22 − dx21, ds21 = −dx23. (9)

Also it is clear that we can consider (S0, ds
2
0) as the matrix Lie group (8)

with left-invariant Lorentz metric, which according to (7) has nonzero
components

g00 = 1, g02 = g20 = 1, g22 =
1

2
, g11 = −1 (10)

with respect to the basis e0, e1, e2 of the Lie algebra g3 of the matrix Lie
group (8).



In consequence of (6), for the Lie algebra g3 of the Lie group G3,

e0 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , e1 =


−1 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , e2 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 .

(11)
Then in the Lie algebra g3,

[e1, e2] = e1e2 − e2e1 = −e2, [e0, e1] = [e0, e2] = 0. (12)



The Iwasawa decomposition of Lie algebras and Lie groups

Let g be a semisimple real Lie algebra, σ be some Cartan involution of g,
and g = k⊕ p be the corresponding Cartan decomposition (k is the Lie
subalgebra of g, consisting of �xed points relative to σ). Let us denote by
mathfraka a maximal commutative subspace in p. Then there is the
following Iwasawa decomposition of Lie algebra g.

Theorem 1

(4.7.2) in [6]. Let g be a semisimple real Lie algebra.
Then there exists a direct sum of vector subspaces in g

g = k⊕ a⊕ n, (13)

where n is a nilpotent subalgebra in g such that the endomorphism adX
is nilpotent for every X ∈ n, and a⊕ n is a solvable subalgebra in g.



As an example, the authors of [6] give the decomposition (13) for
g = sl(n,R). In this case k is the Lie subalgebra of skew-symmetric
matrices, a is the Lie subalgebra of diagonal matrices (with zero trace),
and n is the Lie subalgebra of strictly upper triangular matrices. In
particular, for g = sl(2,R) we have

k =

{(
0 t
−t 0

)}
, a =

{(
t 0
0 −t

)}
, n =

{(
0 t
0 0

)}
, t ∈ R,

(14)
with natural basis

f0 =

(
0 1
−1 0

)
, f1 =

(
1 0
0 −1

)
, f2 =

(
0 1
0 0

)
(15)

and Lie brackets for this basis

[f0, f1] = 2f0 − 3f2, [f0, f2] = f1, [f1, f2] = 2f2. (16)



Let K = exp(k), A = exp(a), N = exp(n) be Lie subgroups of the
semisimple Lie group G, corresponding to the decomposition (13).

Theorem 2

(Theorem 9.1.3 in [5]) Let G be a connected semisimple real Lie group.
Then G = KAN and the mapping

(k, a, n) → kan (17)

is the di�eomorphism of manifold K ×A×N onto the Lie group G.

Corollary 1

The Lie group G is di�eomorphic to Lie groups K ×AN and K ×A×N.

Theorem 1 and Theorem 6.1.1 from [5] imply the following



Proposition 1

The sets K, A, N, and AN are connected closed Lie subgroups of the Lie
group G, where AdG(K) is compact, A is commutative, N is nilpotent,
and AN is solvable. The subgroup K contains the center Z of the Lie
group G. In addition, K is compact if and only if the center Z of G is
�nite; in this case K is a maximal compact subgroup of the Lie group G.

Corollary 2

If G = SL(n,R), then K = SO(n), A is the group of all real diagonal
(n× n)-matrices with unit determinant, N could be considered as the
group of all real upper triangular (n× n)-matrices with units on the main
diagonal, and Sol(n) := AN as the group of all real upper triangular
(n× n)-matrices with unit determinant.

Corollary 3

The Lie group SL(n,R) is di�eomorphic to Lie groups SO(n)× Sol(n)
and SO(n)×A×N. So SL(2,R) is di�eomorphic to SO(2)× Sol(2)
and to commutative Lie group SO(2)×A×N.



Isomorphism of Lie groups G3 and (R,+)× A+(R)

Proposition 2

There exist an isomorphism of the Lie group G3 = (R,+)×A+(R) onto
the Lie group (R,+)× Sol(2) and corresponding realization of (S0, ds

2
0)

as the Lie group (R,+)× Sol(2) with left-invariant Lorentz metric.

Proof. Comparing (12) and (16), we see that the linear map
φ : a⊕ n → g such that

φ

(
−f1
2

)
= e1, φ(f2) = e2 (18)

is an isomorphism of Lie algebras. Let Sol(2) be the Lie group with the
Lie algebra a⊕ n for (14). Then (18) de�nes isomorphism of Lie groups
ψ : Sol(2) → G2 :



ψ

((
e−s/2 0
0 es/2

)(
1 r
0 1

))
=


e−s 0 0 e−sr
0 1 0 s
0 0 1 0
0 0 0 1

 , (19)

ψ

((
1 r
0 1

)(
e−s/2 0
0 es/2

))
=


e−s 0 0 r
0 1 0 s
0 0 1 0
0 0 0 1

 . (20)

We can consider (R,+) as Lie algebra and as Lie group. Then mappings

t ∈ (R,+) →
(

0 t
−t 0

)
, t ∈ (R,+) →

(
cos t sin t
− sin t cos t

)
(21)

are correspondingly the isomorphism of Lie algebras and respective
universal covering epimorpism of Lie groups.



Then there exists unique isomorphism ψ of the Lie group (R,+)× Sol(2)
onto the Lie group G3, with properties (19), (20), and ψ(t) = t for
t ∈ (R,+). It follows from previous considerations that we shall realize
(S0, ds

2
0) as the Lie group (R,+)× Sol(2) with left-invariant Lorentz

metric if components of this metric in the basis {f0,−f1/2, f2} of its Lie
algebra will be as in (10).
The corresponding orthonormal basis is

X = f0, Y = −f1/2, Z =
√
2(f0 − f2). (22)



Left-invariant Lorentz metrics on SO(2)× Sol(2) and
SL(2,R)

Theorem 3

The Lorentz metric on ˜SL(2,R) from [2] is not isometric to the subspace
(S0, ds

2
0) of the G�odel Universe and the Iwasawa di�eomorphism of

SL(2,R) onto SO(2)× Sol(2) is not isometry for Lorentz metric on
SL(2,R) from [2].

Proof.
For any (pseudo)-Riemannian manifold M with (pseudo)-metric tensor
(·, ·), the Levi-Civita connection ∇, and smooth vector �elds X, Y, Z it
follows from equation (3.5.(7)) in [7] that (∇XY,Z) is equal to

1

2
[X(Y,Z)+Y (Z,X)−Z(X,Y )+(Z, [X,Y ])+(Y, [Z,X])−(X, [Y,Z])].

(23)



As a consequence, if (M, (·, ·)) is a Lie group G with left-invariant
(pseudo)-metric (·, ·) and X, Y, Z are left-invariant, then

(∇XY,Z) =
1

2
[(Z, [X,Y ]) + (Y, [Z,X])− (X, [Y,Z])]. (24)

Let assume now that G = SO(2)× Sol(2) with left-invariant Lorentz
metric and (X,Y, Z) be an orthonormal basis of left-invariant vector
�elds such that X be tangent to SO(2) and (X,X) = 1. Then
Y = αX + Y1, Z = βX + Z1, where Y1, Z1 ∈ sol(2) and

(∇XY,Z) =
−1

2
(X, [Y,Z]) =

−1

2
(X,W1) := −γ1, W1 ∈ n, (25)

(∇XY,X) = 0, (∇XY, Y ) = 0, ∇XY = γ1Z.

We want to calculate

R(X,Y )Y = ∇X∇Y Y −∇Y ∇XY −∇[X,Y ]Y = ∇X∇Y Y −∇Y ∇XY.



It follows from (24) that

(∇Y Y,X) = (∇Y Y, Y ) = 0, (∇Y Y,Z) = −(Y,W1) := −γ2, ∇Y Y = γ2Z,

(∇XZ,X) = (∇XZ,Z) = 0, (∇XZ, Y ) =
−1

2
(X, [Z, Y ]) = γ1,∇XZ = −γ1Y,

(∇Y Z,X) = γ1, (∇Y Z, Y ) = γ2, (∇Y Z,Z) = 0, ∇Y Z = γ1X−γ2Y,
R(X,Y )Y = ∇X(γ2Z)−∇Y (γ1Z) = −γ1γ2Y −γ21X+γ1γ2Y = −γ21X.
Let us calculate yet an analogue of the sectional curvature

(R(X,Y )Y,X) = −γ21 .

In [2], the authors consider the Lie group SL(2,R) with left-invariant
Lorentz metric and orthonormal basis with opposite signature of the form

X =
1√
2

(
0 1
−1 0

)
, Y =

(
1 0
0 −1

)
, Z =

(
0 1
1 0

)
∈ sl(2,R).

(26)
Then [Y,Z] = 2

√
2X in sl(2,R), but [Y,Z] = 0 in the Lie algebra

so(2)⊕ sol(2), and according to the above, γ1 = 0 in SO(2)×Sol(2) and

R(X,Y )Y = 0. (27)



Now let us calculate R(X,Y )Y and (R(X,Y )Y,X) for left-invariant
Lorentz metric on the Lie group SO(2)× Sol(2), locally isometric to the
the three-dimensional subspace (S0, ds

2
0) of the G�odel Universe.

According to (33) and (10), we have

W1 = [Y, Z] =
√
2[−f1/2, (f0−f2)] = −

√
2f2, γ1 = −1

2
(X,W1) =

√
2.

So, according to previous calculations,

R(X,Y )Y = −2X, (R(X,Y )Y,X) = −2. (28)

Let us compute now R(X,Y )Y for left-invariant Lorentz metric on
SL(2,R), de�ned in [2]. It follows from (26) that



[X,Y ] =
√
2Z, [X,Z] =

√
2Y, [Y,Z] = 2

√
2X. (29)

Let us apply (24) and (29) in the further computations.

(∇XY,Z) = −
√
2, (∇XY,X) = (∇XY, Y ) = 0, ∇XY =

√
2Z,

(∇Y Y,X) = (∇Y Y, Y ) = (∇Y Y,Z) = 0, ∇Y Y = 0,

(∇ZY,X) = −2
√
2, (∇ZY, Y ) = (∇ZY,Z) = 0, ∇ZY = −2

√
2X,

∇Y Z = ∇ZY + [Y, Z] = 0,

R(X,Y )Y = ∇X∇Y Y−∇Y ∇XY−∇[X,Y ]Y = −
√
2(∇Y Z−∇ZY ) = −4X

(30)
All equalities (27), (28), and (30) are pairwise di�erent.
This implies all statements of Theorem 3.



Isometry of non-isomorphic sub-Riemannian Lie groups

Let us change notation x1 ↔ x2, x0 → x3. Then the mapping
e−x2 0 0 x1
0 1 0 x2
0 0 1 x3
0 0 0 1

 →

 e−x2 0 x1
0 1 x3
0 0 1

 ∈ A+(R)× (R,+) (31)

is an isomorphism of matrix Lie groups with the basis of the Lie algebra

e1 =

 0 0 1
0 0 0
0 0 0

 , e2 =

 −1 0 0
0 0 0
0 0 0

 , e3 =

 0 0 0
0 0 1
0 0 0

 ,

such that only [e1, e2] = −[e2, e1] = e1 are unique nonzero Lie brackets.



Analogously to (19) and (20), the mapping

F

 e−x2 0 x1
0 1 x3
0 0 1

 =

((
e−x2/2 x1

0 ex2/2

)
,

(
cosx3 sinx3
− sinx3 cosx3

))
(32)

is universal covering epimorphism A+(R)× (R,+) → Sol(2)× SO(2).

The standard left-invariant sub-Riemannian structure on A+(R)× (R,+)
is de�ned in [3] by the orthonormal frame ∆ = span{e2, e1 + e3}. Then
there is unique sub-Riemannian structure on Sol(2)× SO(2) such that F
is a local isometry; it is de�ned by the orthonormal frame
∆ = span{e2, e1 + e3}, where

e1 =

(
0 1
0 0

)
, e2 =

(
−1/2 0
0 1/2

)
, e3 =

(
0 1
−1 0

)
. (33)



Now we follow [3]. Let a = e−x2 and b = x1 in the second matrix of (31).
The subgroup A+(R) is di�eomorphic to the half-plane
{(a, b) ∈ R2, a > 0}, which is desrcibed in the standard polar coordinates
as {(ρ, θ)|ρ > 0,−π/2 < θ < π/2}.

Theorem 4

[3]. The di�eomorphism Ψ : A+(R)× S1 → SL(2,R) de�ned by

Ψ(ρ, θ, φ) =
1√

ρ cos θ

(
cosφ sinφ

ρ sin(θ − φ) ρ cos(θ − φ)

)
, (34)

where (ρ, θ) ∈ A+(R) and φ ∈ S1, is a global sub-Riemannian isometry.

Remark 1

Using the above locally isometric covering F , we can and will understand
Ψ as the global isometry between Sol(2)× SO(2) and SL(2,R) supplied
with sub-Riemannian metrics de�ned by the same frame ∆.



Corollary 4

A+(R)× (R,+) with sub-Riemannian metric, de�ned by the frame ∆, is

isometric to the universal covering ˜SL(2,R) of SL(2,R) with
sub-Riemannian metric such that the natural universal covering

epimorphism of ˜SL(2,R) onto SL(2,R) with sub-Riemannian metric,
de�ned by the frame ∆, is a local isometry.

Proposition 3

The global isometry Ψ in the sense of Remark 1 is the Iwasawa
di�eomorphism of Sol(2)× SO(2) onto SL(2,R) of the view
(na, k) ∈ NA× SO(2) → nak ∈ NAK = SL(2,R), where

n =

(
1 0
b 1

)
, a =

(
a−1/2 0
0 a1/2

)
, k =

(
cosφ sinφ
− sinφ cosφ

)
,

a = ρ cos θ, b = ρ sin θ.

Äîêàçàòåëüñòâî.

One needs simply to check that nak is equal to the matrix in (34).



Remark 2

Notice that n = exp(tẽ1), a = exp(se2), where ẽ1 = (e1)
T , T is the sign

of transposition, b = t, and a1/2 = es/2. Also [ẽ1, e2] = −ẽ1.

THANK YOU VERY MUCH FOR ATTENTION!


