
On complexity of the problem of solving systems
of tropical polynomial equations of degree two

Matvei Kotov

(based on joint work with I. Buchinskiy and A. Treier)

Sobolev Institute of Mathematics of SB RAS

Conference “Combinatorial-computational methods of algebra and logic”, Omsk, July 19th, 2024

1 / 30



Tropical algebras

The extended set of real numbers R ∪ {∞} equipped with two
binary operations ⊕,⊗ defined by

x ⊕ y = min(x , y),

x ⊗ y = x + y .

is called the min-plus algebra.

If we consider R ∪ {−∞} and define ⊕,⊗ as

x ⊕ y = max(x , y),

x ⊗ y = x + y ,

we obtain the max-plus algebra.
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Why is it called tropical?

The adjective tropical was coined by French mathematicians in
honor of the Hungarian-born Brazilian computer scientist Imre
Simon, who wrote on the field.
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Tropical algebras

Since the max-plus and min-plus algebras are commutative
idempotent semirings, then the following identities hold:

1 (a⊕ b)⊕ c = a⊕ (b ⊕ c),

2 o ⊕ a = a⊕ o = a,

3 a⊕ b = b ⊕ a,

4 (a⊗ b)⊗ c = a⊗ (b ⊗ c),

5 e ⊗ a = a⊗ e = a,

6 a⊗ b = b ⊗ a,

7 a⊗ (b ⊕ c) = (a⊗ b)⊕ (a⊗ c),

8 (a⊕ b)⊗ c = (a⊗ c)⊕ (b ⊗ c),

9 o ⊗ a = a⊗ o = o,

10 a⊕ a = a,

where o is −∞ for the max-plus algebra and is ∞ for the min-plus
algebra, and e is 0.
(A semiring is a ring without the requirement that each element
must have an additive inverse.)
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Tropical algebras

For example, let’s consider the max-plus algebra:

4⊗ (−6⊕−3) = (4⊗−6)⊕ (4⊗−3)

= −2⊕ 1

= 1.
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Tropical polynomials

Consider, for example, the max-plus algebra. We can define a
tropical polynomial:

p(x) =
d⊕

k=0

pk ⊗ x⊕k = max
1≤k≤d

{pk + k · x}.

A max-plus polynomial is a convex, piecewise-linear function.
For example, p(x) = −1⊗ x⊗3 ⊕ 1⊗ x⊗2 ⊕ x ⊕ 2.
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Tropical matrices

The set of all n × n matrices Matn(S) with entries from a semiring
S can be equipped with operations ⊕ and ⊗ as defined below:

(aij)⊕ (bij) = (aij ⊕ bij)

(aij)⊗ (bij) = (ai1 ⊗ b1j ⊕ . . .⊕ ain ⊗ bnj).

For example, let’s consider two matrices over max-times algebra:

A =

(
1 2
0 ∞

)
,B =

(
3 4
5 0

)
.

Then

A⊗ B =

(
1 2
0 ∞

)
⊗
(

3 4
5 0

)
=(

1⊗ 3⊕ 2⊗ 5 1⊗ 4⊕ 2⊗ 0
0⊗ 3⊕∞⊗ 5 0⊗ 4⊕∞⊗ 0

)
=(

3⊕ 10 4⊕ 0
0⊕∞ 0⊕ 0

)
=

(
10 4
∞ 0

)
.
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Tropical matrices

The obtained set of matrices also in an idempotent semiring. In
other words, the following identities are true:

1 (A⊕ B)⊕ C = A⊕ (B ⊕ C ),

2 O ⊕ A = A⊕ O = A,

3 A⊕ B = B ⊕ A,

4 (A⊗ B)⊗ C = A⊗ (B ⊗ C ),

5 E ⊗ A = A⊗ E = A,

6 A⊗ (B ⊕ C ) = (A⊗ B)⊕ (A⊗ C ),

7 (A⊕ B)⊗ C = (A⊗ C )⊕ (B ⊗ C ),

8 O ⊗ A = A⊗ O = O,

9 A⊕ A = A.

Let A ∈ Matn(S) and p(x) =
⊕d

i=0 pi ⊗ x⊗i , then we denote the

matrix
⊕d

i=0 pi ⊗ A⊗i by p(A).
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Applications

Tropical geometry has a lot of applications in combinatorial
optimization, algebraic geometry, auction theory, mechanism
design, game theory, scheduling etc.

In cryptography:

Improved efficiency because the operations can be performed
fast.

Linear algebra attacks are not applicable.

Systems of tropical equations are not easy to solve.

Also, there are ideas to add a tropical structure to neural networks:
[LANA:2021] Limonova, E., et al., Bipolar Morphological Neural
Networks: Gate-Efficient Architecture for Computer Vision, IEEE
Access 9 (2021): 97569–97581.
[PL:2023] Petrova A., Kazakevich, V., Application of the tropical
mathematics apparatus in architecture of neural networks, Comp.
Instr. Obraz. 3 (2023): 18–27.
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Connection to optimization

Consider a weighted graph G . Let W be the weighted adjacency
matrix.
Consider W⊗2 in the min-plus algebra.

W⊗2 = (wij)⊗ (wij) = (wi1 ⊗ w1j ⊕ . . .⊕ win ⊗ wnj)ij =

= (min(wi1 + w1j , . . . ,win + wnj))ij

Therefore, we obtained the shortest distances among all the paths
of length 2.
The third power gives as the shortest distances among all the
paths of length 3, and so on.
The sum W⊗∗ = I ⊕W ⊕W⊗2 ⊕W⊗2 ⊕ . . . gives as the shortest
distances among all the paths.
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Tropical Cryptography

Tropical cryptography is an area of cryptography in which
different tropical algebraic structures are used as platforms for
cryptographic protocols.

[GS:2014] Grigoriev, D., Shpilrain, V., Tropical cryptography,
Comm. Algebra, 42(6), 2624–2632, 2014. (Preprint in 2011)
[GS:2019] Grigoriev, D., Shpilrain, V., Tropical cryptography II:
extensions by homomorphisms, Comm. Algebra, 47(10),
4224–4229, 2019.
[CGS:2023] Chen J., Grigoriev D., Shpilrain V., Tropical
cryptography III: digital signatures, Cryptology ePrint Archive,
2023.

Now, there are a few dozens papers and preprints devoted to
tropical cryptography.
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Sidelnikov, Cherepnev, and Yaschenko’s key exchange

Sidelnikov, Cherepnev, and Yaschenko proposed the following key
exchange method based on non-commutative semigroups.
Let G be a non-commutative semigroup, H and R be commutative
subsemigroups of G , and W ∈ G .

1 Alice chooses as her secret key two elements PA ∈ H and
QA ∈ R. She computes KA = PA ·W ·QA and sends it to Bob.

2 Bob chooses as his secret key two elements PB ∈ H and
QB ∈ R. He computes KB = PB ·W · QB and sends it to
Alice.

3 Alice computes the common secret key KAB = PA · KB · QA.

4 Bob computes the common secret key KBA = PB · KA · QB .

They share the same key:
PA · (PB ·W · QB) · QA = PB · (PA ·W · QA) · QB .

[SCY:1993] V. Sidelnikov, M. Cherepnev, and V. Yashchenko,
Systems of open distribution of keys on the basis of
noncommutative semigroups, Dokl. RAN., 332.5, 566–567, 1993
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Linear decomposition attack

[MR:2015] A. Myasnikov, V. Roman’kov, A linear decomposition
attack, Groups, Complexity, Cryptology, 2015, 7, 81–94

In this paper, the authors offered a new attack on several known
group-based cryptosystems. This attack gives a polynomial time
deterministic algorithm that recovers the secret shared key from
the public data in all the schemes under consideration. They
showed show that in this case the typical computational security
assumptions are not very relevant to the security of the schemes,
i.e., one can break the schemes without solving the algorithmic
problems on which the assumptions are based.

For more information:
[R:2020] V. Roman’kov Algebraic cryptology, Omsk, Omsk State
University Press, 2020
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Cryptanalysis

[KU:2018] M. Kotov, A. Ushakov, Analysis of a key exchange
protocol based on tropical matrix algebra, J. Math. Cryptol., 12.3,
2018, 137–141
[MS:2020] A. Muanalifah, S. Sergeev, Modifying the tropical
version of Stickel’s key exchange protocol, Appl. Math., 65.6,
727–753, 2020.
[BKT:2023] I. Buchinskiy, M. Kotov, A. Treier, Analysis of four
protocols based on tropical circulant matrices, Cryptology ePrint
Archive, 2023, also submitted to IJPA
[ACS:2023] S. Alhussaini, C. Collett, S. Sergeev, Generalized
Kotov-Ushakov Attack on Tropical Stickel Protocol Based on
Modified Tropical Circulant Matrices, Cryptology ePrint Archive,
2023.
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Problem 1

During the analysis of these protocols, the following equation
arises:

X ⊗W ⊗ Y = KA,

where X =
⊕d1

i=1 xi ⊗ Bi , Y =
⊕d2

j=1 yj ⊗ Cj , Bi and Cj are known
matrices and xi , yj are unknowns.
Then we have(

d1⊕
i=1

xi ⊗ Bi

)
⊗W ⊗

 d2⊕
j=1

yj ⊗ Cj

 = KA.

Let T ij = Bi ⊗W ⊗ Cj − KA, and E be the matrix of the
corresponding size with all entries equal to 0. Then we obtain⊕

i∈{1,...,d1}
j∈{1,...,d2}

(xi ⊗ yj)⊗ T ij = E .
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Problem 1

Therefore, we have the following system of equations:⊕
i∈{1,...,d1}
j∈{1,...,d2}

(xi ⊗ yj ⊗ T ij
kl) = 0 for each k , l ∈ {1, . . . , n},

or, using the max and + signs,

max
i∈{1,...,d1}
j∈{1,...,d2}

(xi + yj + T ij
kl) = 0 for each k , l ∈ {1, . . . , n}.

To solve this system, heuristics algorithms are used. It is
interesting to know the complexity of this problem.
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Problem 1

Let us forget how we get the numbers T ij
kl . We will consider the

following problem:

Problem 1

Given numbers m, n, akij , 1 ≤ k ≤ m, 1 ≤ i , j ≤ n. Decide if there
is a solution to the system of equations⊕

1≤i ,j≤n

akij ⊗ xi ⊗ yj = 0, 1 ≤ k ≤ m. (1)
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Polynomials

A tropical monomial is an expression of the form
a⊗ x⊗k1

1 ⊗ . . .⊗ x⊗kn
n .

A tropical sum of tropical monomials is called a tropical
polynomial.

The degree of a tropical monomial a⊗ x⊗k1
1 ⊗ . . .⊗ x⊗kn

n is
k1 + . . .+ kn.
The degree of a tropical polynomial is the maximal degree of its
monomials.

A one-sided tropical polynomial equation has the form
p(x) = c , where p(x) is a tropical polynomial.
A two-sided tropical polynomial equation has the form
p(x) = q(x), where p(x) and q(x) are tropical polynomials.
These cases are very different because the tropical algebras are
semirings.
The degree of a two-sided tropical polynomial equation is the
maximum of the degrees of its parts.
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Systems

A finite set of one-sided tropical polynomial equations is called a
one-sided system of tropical polynomial equations.
A finite set of two-sided tropical polynomial equations is called a
two-sided system of tropical polynomial equations.

Using the matrix notation, we can write any one-sided system of
tropical linear equations as

A⊗ X = B,

and any two-sided system of tropical linear equations as

A⊗ X ⊕ B = C ⊗ X ⊕ D.
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One-sided systems of linear equations

(We will consider the max-plus algebra Zmax,+.)

It is easy to find a solution to a one-sided system of tropical linear
equations A⊗ X = B.
The vector

x =

(
−max

i
(aij − bi )

)
j

is called the principal solution to this system.
It is known that this system has a solution if and only if x is a
solution.
Moreover, let Mj = argmax(aij − bi ), then the system has a
solution if and only if

⋃
j Mj = {1, . . . ,m}, where m is the number

of equations.
It is easy to see that these conditions can be checked in O(mnb),
where m × n is the size of the matrix A, and b is the number of
bits to store the elements of A and B.

[B:2010] Butkovič, P.: Max-linear systems: theory and algorithms.
Springer, London (2010).
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Two-sided systems

It was proven by Bezem, Nieuwenhuis, and Rodŕıguez-Carbonell
that two-sided systems of tropical linear equations

A⊗ X ⊕ B = C ⊗ X ⊕ D

are polynomially equivalent to mean payoff games, a well-known
hard problem in NP ∩ co-NP.

[BNR:2010] Bezem M., Nieuwenhuis R., Rodŕıguez-Carbonell E.,
Hard problems in max-algebra, control theory, hypergraphs and
other areas. Information processing letters 110(4), 133–138 (2010).
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Theorem 1

Grigoriev and Shpilrain proved the following theorem.

Theorem ([GS:2014])

The problem of determining if there exists a solution to a given
system of tropical polynomial equations is NP-hard.

Actually, if we take a look at their proof, we will see that they
proved the following result.

Theorem ([GS:2014])

The problem of determining if there exists a solution to a given
one-sided system of tropical polynomial equations of degree d ≤ 2
is NP-hard.

It is still not enough because this class of systems is wider than the
class in Problem 1.
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Theorem 1

We prove the following theorem.

Theorem (BKT, 2023)

Problem 1 is NP-complete.

Problem 1

Given numbers m, n, akij , 1 ≤ k ≤ m, 1 ≤ i , j ≤ n. Decide if there
is a solution to the system of equations⊕

1≤i ,j≤n

akij ⊗ xi ⊗ yj = 0, 1 ≤ k ≤ m. (2)
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Theorem 2

To prove this theorem, we need the following result.

Theorem

Consider a system of equations (1). Let cij = −maxk(akij) and
Sij = argmaxk(akij). Then xi , yi is a solution to the system if and
only if there is a set C ⊆ {1, . . . , n} × {1, . . . , n} such that⋃

(i ,j)∈C

Sij = {1, . . . ,m} (3)

and
xi + yj = cij if (i , j) ∈ C ,
xi + yj ≤ cij otherwise.

(4)

This theorem shows that a solution can be obtained as a solution
of linear programming problem.
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The idea of the proof of Theorem 1

We will reduce the 3-SAT problem to this problem.
Let us have a 3-CNF φ(u1, . . . , un) that has m clauses.
For every variable ui , we include the following pair of equations:

(x2i−1 ⊗ y2i−1)⊕ (x2i ⊗ y2i ) = 2

and
(x2i−1 ⊗ y2i )⊕ (x2i ⊗ y2i−1) = 1.

Note that x2i−1 ⊗ y2i−1 and x2i ⊗ y2i cannot be equal to 2 at the
same time.
For a clause with three literals uαi ∨ uβj ∨ uγk , we include the
following equation:

(x2i−α ⊗ y2i−α)⊕ (x2j−β ⊗ y2j−β)⊕ (x2k−γ ⊗ y2k−γ) = 2.

Problem 1 is in NP becase we can obtain a solution to the system
as a solution to a linear programming problem using Theorem 2.
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Generic-case complexity

Let I be a set. A stratification of I is a sequence {In}n∈N of
non-empty finite subsets In such that

⋃
n In = I . Stratifications are

often specified by length functions.
A length function on I is a map l : I → N such that the inverse
image of every integer is finite.
The corresponding spherical stratification is formed by spheres
Sn = {x ∈ I | l(x) = n}. For a subset A ⊆ I and a
stratification {In}, the limit

ρ(A) = lim
n→∞

|A ∩ In|
|In|

(if it exists) is called the asymptotic density of A with respect to
the stratification {In}.
If ρ(A) = 1, we say that A is generic.
If ρ(A) = 0, we say that A is negligible.
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Generic-case complexity

An algorithm A : I → J ∪ {?} is called generic if

1 A stops on every input x ∈ I ,

2 {x ∈ I | A(x) ̸= ?} is a generic set.

Here, the answer ? means “don’t know”.
A decision problem A ⊆ I is decidable generically in polynomial
time if there is a polynomial generic algorithm computing the
indicator function of A.

Let Sys(m, n,M) be the set of all systems of m equations in the
variables xi , yj , 1 ≤ i ≤ n, 1 ≤ j ≤ n, of the form (1), where all the
coefficients akij are in M. Let S be a set of systems of equations.

Denote by Sat(S) the set of all the solvable systems in S .
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Theorem 3

Theorem (BKT, 2023)

Let n = n(r), m = m(r), R = R(r), and L = L(r) be functions of
a positive integer r . Consider the union

Sys =
⋃
r

Sys(m(r), n(r), [L(r),R(r)))

and its stratification

{Sys(m(r), n(r), [L(r),R(r)))}r .

If m(r) ≤ n(r)2 and R(r)− L(r) = ω(m(r)2n(r)2), then the
asymptotic density of Sat(Sys) is 0.

For example, let m and n be fixed, and m ≥ n2. Then
Sat(Sys(m, n,Z≥0)) = 0 w.r.t. {Sys(m, n, [0, r))}r ,
and Sat(Sys(m, n,Z)) = 0 w.r.t. {Sys(m, n, [−r , r ])}r .
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Theorem 4

Theorem (BKT, 2023)

Consider the problem of determining if there is a solution to a
system of equations (1), where all the coefficients are integers and
L ≤ akij < R. Let n = n(r), m = m(r), R = R(r), and L = L(r)
be functions of a positive integer r . If

1 m = O(f (r)) for some polynomial f (r),

2 n = O(g(r)) for some polynomial g(r),

3 log(max(|R(r)|, |L(r)|)) = O(h(r)) for some polynomial h(r),

4 m(r) ≥ n(r)2,

5 R(r)− L(r) = ω(m(r)2n(r)2),

then this problem is decidable generically in polynomial time in r .

[BKT:2024] Buchinskiy I., Kotov M., Treier A., On complexity of
the problem of solving systems of tropical polynomial equations of
degree two, Cryptology ePrint Archive, 2024.
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Thank you!
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