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Introduction

This is joint work with Bobo Hua (Fudan University), I. A. Mednykh
(Sobolev Institute of Mathematics), Lili Wang (Fujian Normal University).
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Introduction

Let G be a finite connected graph. The notion of the complexity of a graph
can be defined in several different ways. One can consider the number of
edges or vertices, the number of spanning trees or rooted spanning forests.
All the above-mentioned values can be expressed in terms of the Laplacian
spectrum of a graph. In particular, by the famous Kirchhoff Matrix-Tree
Theorem the number of spanning trees in a connected graph is equal to the
product of all non-zero eigenvalues of its Laplacian matrix divided by the
number of vertices.
The study of such invariants usually leads to the following question: how to
find the product of eigenvalues of the Laplacian matrix? If the size
(number of vertices) of a graph is small, it is an easy task. However, the
most interesting cases involve the family of graphs with increasing number of
vertices. The direct calculation of this product becomes tedious and
unmanageable when the number of vertices n of the graph tends to infinity.
To solve this problem, we use the techniques developed in previous papers by
the authors.
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As a result, one can find a closed formula which is the product of a bounded
number of factors, each given by the n-th Chebyshev polynomial of the first
kind evaluated at the roots of some polynomial of prescribed degree. This
paves the way to investigate arithmetical properties and asymptotics.
The complexity of a graph plays an important role in statistic physics, where
the graphs with arbitrarily large number of vertices are considered. With
increasing number of vertices the structure of the Laplacian characteristic
polynomial becomes quite complicated. In this case, the most interesting
invariants are given by their asymptotics.
The aim of the present report is to produce explicit analytic formulas for the
number of spanning trees in a Cayley graph Dn, see (1) for the definition,
on a dihedral group. Such formulas help in the investigation of
number–theoretical properties and asymptotics of several spectral invariants
of the graph. This research expands series of publications by various authors
on the complexity of circulant graphs. Note that the circulant graph is a
Cayley graph on a cyclic group.
The methods laid out in the present report can be equally used to find
explicit formulas for the number of rooted spanning forests and Kirchhoff
index.
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Definition

Consider a finite connected graph G with possibly multiple edges, but
without loops. We denote by V (G ) and E (G ) the set of vertices and the set
of edges of G respectively.
A tree is a connected undirected graph without cycles. A spanning tree in a
graph G is a subgraph that is a tree and contains all the vertices of G .
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Definition

Given u, v ∈ V (G ), we write auv as the number of edges between vertices u
and v . The matrix A = A(G ) = {auv }u,v ∈V (G ) is called the adjacency matrix
of the graph G . The degree dv of a vertex v ∈ V (G ) is defined by
dv =

∑
u∈V (G ) auv . Let D = D (G ) be the diagonal matrix indexed by the

elements of V (G ) with dvv = dv . The matrix L = L(G ) = D (G ) − A(G ) is
called the Laplacian matrix, or simply Laplacian, of the graph G .

In what follows, we denote by In the identity matrix of order n.
We say that an n × n matrix is circulant, denoted by circ (a0, a1, . . . , an−1), if
it is of the form

circ (a0, a1, . . . , an−1) =
©«

a0 a1 a2 . . . an−1
an−1 a0 a1 . . . an−2

...
. . .

...

a1 a2 a3 . . . a0

ª®®®®¬
.
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Definition

Let D be a group, and let S be a subset of D , which doesn’t contain the
identity element 1. The Cayley digraph associated with (D , S) is then
defined as the directed graph with the set of vertices D and the set of edges

{(g , h) : g , h ∈ D , gh−1 ∈ S}.

The Cayley graph depends on the choice of a generating set S , and is
connected if and only if S generates D (i.e., the set S are group generators
of D). We deal with undirected graphs, and always assume that S = S−1,

where S−1 = {s : s−1 ∈ S}.
Let Dn = ⟨a, b |a2 = 1, bn = 1, (a b)2 = 1⟩ be dihedral group of order 2n. We
arrange the elements of the group Dn as
V = {1, b, . . . , bn−1, a, ba, . . . , bn−1a} and consider the Cayley graph

Dn = Cay (Dn, b
±𝛽1 , b±𝛽2 , . . . , b±𝛽s , ab𝛾1 , ab𝛾2 , . . . , ab𝛾t ) (1)

with the generating set S = {b±𝛽1 , b±𝛽2 , . . . , b±𝛽s , ab𝛾1 , ab𝛾2 , . . . , ab𝛾t } for
some integers 𝛽1, 𝛽2, · · · , and 𝛾1, 𝛾2, · · · . We suppose that Dn acts on V
by the rule: g ∈ Dn sends a vertex v ∈ V to the vertex vg .
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Definition

Then the set of oriented edges of Dn can be describe as follows. Given

j ∈ {±𝛽1,±𝛽2, . . . ,±𝛽s } there is an edge bk
bj−→ bk+j and an edge

bka
bj−→ bk−ja for any k = 0, 1, . . . , n − 1; given j ∈ {𝛾1, 𝛾2, . . . , 𝛾t} there is

an edge bk
abj−−→ bk−ja and an edge bka

abj−−→ bk+j for any k = 0, 1, . . . , n − 1.
Noting that (abj )−1 = b−ja = abj , we have S = S−1. Hence Dn is an
undirected graph.
We always restrict to the case 0 < 𝛽1 < 𝛽2 < · · · < 𝛽s <

n
2 and

0 ≤ 𝛾1 < 𝛾2 < · · · < 𝛾t ≤ n − 1. We suppose that s ≥ 0 and t ≥ 1. Then
the graph Dn has no loops and multiple edges.
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Auxiliary results

Now we introduce a necessary and sufficient condition for the connectedness
of the graph Dn.

Lemma 1
The graph Dn = Cay (Dn, b

±𝛽1 , b±𝛽2 , . . . , b±𝛽s , ab𝛾1 , ab𝛾2 , . . . , ab𝛾t ) is
connected if and only if gcd(n, 𝛽j , 1 ≤ j ≤ s , 𝛾j − 𝛾k , 1 ≤ j < k ≤ t) is
equal to 1.
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Auxiliary results

The adjacency matrix of the graph Dn is given by the 2n × 2n block matrix

A =

©«
s∑

j=1
(T 𝛽j

n + T
−𝛽j
n )

t∑
j=1

T
−𝛾j
n

t∑
j=1

T
𝛾j
n

s∑
j=1

(T 𝛽j
n + T

−𝛽j
n )

ª®®®¬ ,
where Tn = circ (0, 1, 0, . . . , 0). The corresponding degree matrix is

D =

(
(2s + t)In 0

0 (2s + t)In

)
, where In is the n × n identity matrix. Since

the Laplacian of Dn is L = D − A, we have

L =

©«
(2s + t)In −

s∑
j=1

(T 𝛽j
n + T

−𝛽j
n ) −

t∑
j=1

T
−𝛾j
n

−
t∑

j=1
T

𝛾j
n (2s + t)In −

s∑
j=1

(T 𝛽j
n + T

−𝛽j
n )

ª®®®¬ .
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Spectrum of a Cayley graph on the dihedral group

Let Dn = Cay (Dn, b
±𝛽1 , b±𝛽2 , . . . , b±𝛽s , ab𝛾1 , ab𝛾2 , . . . , ab𝛾t ) be the Cayley

graph on a dihedral group Dn. We introduce the following Laurent
polynomials

A(z) = 2s + t −
s∑︁
i=1

(z𝛽i + z−𝛽i ), B(z) = −
t∑︁

i=1

z𝛾i

and
P (z) = A(z)A(z−1) − B(z)B(z−1).

We will refer to P (z) as the Laurent polynomial associated with the graph
Dn. Then the Laplacian of the graph Dn is given by the following 2n × 2n

block matrix L =

(
A(T ) B(T −1)
B(T ) A(T −1)

)
, where T = circ (0, 1, 0, . . . , 0).
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Spectrum of a Cayley graph on the dihedral group

Recall that T is conjugated to T = diag (1, 𝜀, . . . , 𝜀n−1), where
𝜀 = 𝜀n = exp(2𝜋i/n). So that L is conjugated to the matrix

L =

(
A(T) B(T−1)
B(T) A(T−1)

)
. The spectra of L and L are the same. It can be

found by solving the system of linear equations{
A(T)x + B(T−1)y = 𝜆x
B(T)x + A(T−1)y = 𝜆y,

where x, y ∈ Cn and (x, y) ≠ (0, 0). Since the matrix T is diagonal, the
system of equations splits into n scalar linear systems{

A(𝜀j )x + B(𝜀−j )y = 𝜆x

B(𝜀j )x + A(𝜀−j )y = 𝜆y ,

where j = 0, 1 . . . , n − 1. Hence, 𝜆 is a root of the quadratic equation

𝜆2 − (A(𝜀j ) + A(𝜀−j ))𝜆 + A(𝜀j )A(𝜀−j ) − B(𝜀j )B(𝜀−j ) = 0.
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Spectrum of a Cayley graph on the dihedral group

The solutions of this equation are
𝜆j ,1 = ℜ(A(𝜀j )) +

√︁
−ℑ(A(𝜀j ))2 + |B(𝜀j ) |2 and

𝜆j ,2 = ℜ(A(𝜀j )) −
√︁
−ℑ(A(𝜀j ))2 + |B(𝜀j ) |2. We note that L. Babai (1979)

found similar formulas for eigenvalues for the adjacency matrices of Dn by
making use of the representation theory for finite groups. The corresponding
eigenvectors of the operator L are uj ,1 = B(𝜀j )ej+1 + (𝜆j ,1 − A(𝜀j ))ej+1 and
uj ,2 = B(𝜀j )ej+1 + (𝜆j ,2 − A(𝜀j ))ej+1, where ej is the j-th basic vector in
the C2n.

For the special case j = 0, we have 𝜆2 − 2A(1)𝜆 +A(1)2 −B(1)2 = 0. Hence

𝜆0,1 = A(1) + B(1) = 0, 𝜆0,2 = A(1) − B(1) = 2A(1).

We note also that 𝜆j ,1𝜆j ,2 = A(𝜀j )A(𝜀−j ) − B(𝜀j )B(𝜀−j ) = P (𝜀j ). We
suppose that the graph Dn is connected. Then all the Laplacian eigenvalues,
except of 𝜆0,1 = 0, are non-zero. They are

𝜆0,2, 𝜆j ,1, 𝜆j ,2, j = 1, 2, . . . , n − 1.
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Spectrum of a Cayley graph on the dihedral group

By the Kirchhoff’s theorem we have

𝜏(n) =
𝜆0,2

2n

n−1∏
j=1

𝜆j ,1𝜆j ,2 =
A(1)
n

n−1∏
j=1

P (𝜀j ).

Since A(1) = t, we get the following result.

Theroem 1

Let Dn = Cay (Dn, b
±𝛽1 , b±𝛽2 , . . . , b±𝛽s , ab𝛾1 , ab𝛾2 , . . . , ab𝛾t ) be a Cayley

graph on the dihedral group Dn. Then the number of spanning trees of Dn

is given by the formula

𝜏(n) = t

n

n−1∏
j=1

P (𝜀jn),

where 𝜀n = exp(2𝜋i/n), P (z) = A(z)A(z−1) − B(z)B(z−1), A(z) =
2s + t −

s∑
i=1

(z𝛽i + z−𝛽i ) and B(z) = −
t∑

i=1
z𝛾i .
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Properties of the associated polynomial P (z)

To investigate more deep properties of the associated polynomial P (z) we
have the following two lemmas.

Lemma 2
Let graph Dn be connected. Then P (1) = 0,P ′(1) = 0 and P ′′(1) < 0.

Lemma 3
Suppose that the numbers {𝛽j , 1 ≤ j ≤ s , 𝛾j − 𝛾k , 1 ≤ j < k ≤ t} are
relatively prime. Then for any 𝜑 ∈ R, we have P (ei𝜑) ≥ 0. Furthermore,
P (ei𝜑) = 0 if and only if ei𝜑 = 1.
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Counting spanning trees

One of the main results of this report are the two following theorems.

Theorem 2
Let Dn = Cay (Dn, b

𝛽1 , . . . , b𝛽s , ab𝛾1 , . . . , ab𝛾t ) be a Cayley graph on the
group Dn and P (z) is the associated Laurent polynomial for Dn. Then the
number of spanning trees 𝜏(n) in the graph Dn is given by the formula

𝜏(n) = n t |𝜂 |n
q

∏
P (z )=0
z≠1

|zn − 1|,

where the product is taken over all the roots different from 1 of be the
associated Laurent polynomial P (z), 𝜂 is the leading coefficient of

P (z), and q = 2t
s∑

j=1
𝛽2
j +

∑
1≤j<k≤t

(𝛾j − 𝛾k )2.
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Counting spanning trees

Let us outline the proof of Theorem 2. By Theorem 1 we already have

𝜏(n) = t

n

n−1∏
j=1

P (𝜀jn). (2)

Denote by 𝜂 the leading coefficient by P (z). Recall that
P (z) = A(z)A(z−1) − B (z)B (z−1), where

A(z) = 2s + t −
s∑︁
i=1

(z𝛽i + z−𝛽i ), B (z) = −
t∑︁

i=1

z𝛾i

Since P (z) = P (1/z) we can present polynomial in the form

P (z) = 𝜂 z−r + a1z
−r+1 + . . . + ar + . . . + a1z

r−1 + 𝜂 z r ,

for some r ≥ 0. We still don’t know geometrical meaning of the leading term
𝜂 z r of P (z).
Alexander Mednykh (IM SO RAN) On the spetrum and complexity of Cayley graphs on a dihedral group15 July – 19 July 2024 19 / 38



Counting spanning trees

To continue the proof we replace the Laurent polynomial P (z) by
P̃ (z) = z r

𝜂
P (z). Then P̃ (z) is a monic polynomial of the degree 2r with the

same roots as P (z). We note that

n−1∏
j=1

P̃ (𝜀jn) =
𝜀

(n−1)n
2 r

n

𝜂n−1

n−1∏
j=1

P (𝜀jn) =
(−1)r (n−1)

𝜂n−1

n−1∏
j=1

P (𝜀jn). (3)

By Lemma 2 the polynomial P̃ (z) has two roots equal to 1 and all the other
roots different from 1. Also, we recognize the complex numbers
𝜀
j
n, j = 1, . . . , n − 1 as the roots of polynomial zn−1

z−1 . By the basic properties
of resultant we have

n−1∏
j=1

P̃ (𝜀jn) = Res(P̃ (z), z
n − 1
z − 1

) = Res( z
n − 1
z − 1

, P̃ (z)) =
∏

z: P̃ (z )=0

zn − 1
z − 1

=
∏

z:P (z )=0

zn − 1
z − 1

= ( lim
z→1

zn − 1
z − 1

)2
∏

P (z )=0
z≠1

zn − 1
z − 1

= n2
∏

P (z )=0
z≠1

zn − 1
z − 1

. (4)
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Counting spanning trees

Combine (2), (3), and (4) we have the following formula for the number of
spanning trees

𝜏(n) = (−1)r (n−1)𝜂n−1n t
∏

P (z )=0
z≠1

zn − 1
z − 1

. (5)

To finish the proof we need to evaluate the product
∏

P (z )=0
z≠1

(z − 1). The last

term is equal to P̃ ′′ (1)
2 = 1

2 (
z r

𝜂
P (z))′′z=1 =

P ′′ (1)
2𝜂 = − q

𝜂
. As a result, we get

𝜏(n) = (−1)r (n−1)+1n t 𝜂n

q

∏
P (z )=0
z≠1

(zn − 1). (6)

Since 𝜏(n) is a positive integer, the statement of theorem follows.
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Counting spanning trees

For each Laurent polynomial P (z), satisfying the property P (z) = P (1/z)
we can introduce ordinary polynomial Q (z) which is related to P (z) in tyhe
following way P (z) = Q ( z+z−1

2 ). Also, Q (w ) = P (w +
√
w2 − 1).

Denote by T (n, x) = cos(n arccos(x)) the n-th Chebyshev polynomial of the
first kind. The following equality is known T (n, z+z−1

2 ) = zn+z−n
2 . Because of

this property we refer to polynomial Q (w ) as the Chebyshev transform of
P (z). It is easier to deal with Q (w ) since it is an ordinary polynomial with
degree twice less than P (z).
By Lemmas 2 and 3, the roots of polynomials P (z) and Q (w ) are
1, 1, z1, 1/z1, . . . , zr−1, 1/zr−1, zj ≠ 1 and 1 ≠ wj =

1
2 (zj + z−1

j ), j =

1, . . . , r − 1, respectively. Also T (n,wj ) =
znj +z

−n
j

2 . Hence,∏
P (z )=0
z≠1

(zn − 1) =
r−1∏
j=1

(znj − 1) (z−nj − 1) = (−1)r−1
r−1∏
j=1

(2T (n,wj ) − 2).

Substituting the latter in Theorem 2 we get the following theorem.
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Counting spanning trees

Theorem 3
Let P (z) be the associated Laurent polynomial of the Cayley graph Dn.

Denote by Q (w ) the Chebyshev transform of P (z) and let r be the degree
of polynomial Q (w ). The number of spanning trees 𝜏(n) in the graph Dn is
given by the formula

𝜏(n) = n t |𝜂 |n
q

r−1∏
p=1

|2T (n,wp) − 2|,

where wp , p = 1, 2, . . . , r − 1 are different from 1 roots of the algebraic
equation Q (w ) = 0, and T (n,w ) is the Chebyshev polynomial of the first
kind and 𝜂 and q are the same as above.
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Arithmetical properties of complexity for the graph Dn

The main result of this section is the following theorem.

Theorem 4
Let 𝜏(n) be the number of spanning trees for the graph

Dn = Cay (Dn, b
𝛽1 , b𝛽2 , . . . , b𝛽s , ab𝛾1 , ab𝛾2 , . . . , ab𝛾t ).

Denote by 𝛽odd and 𝛾odd the number of odd numbers in the sequences
𝛽1, 𝛽2, . . . , 𝛽s and 𝛾1, 𝛾2, . . . , 𝛾t respectively. Also, denote by 𝛾even the
number of even numbers in the sequence 𝛾1, 𝛾2, . . . , 𝛾t . Let 𝛿 be the square
free part of the integer 𝜉 = (2𝛽odd + 𝛾odd ) (2𝛽odd + 𝛾even). Then there exists
an integer sequence a(n) such that
10 𝜏(n) = n t a(n)2, if n is odd;
20 𝜏(n) = n t 𝛿 a(n)2, if n is even.
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Arithmetical properties of complexity for the graph Dn

Let show the sketch of the proof.
We consider associated polynomial P (z) for the respective graph Dn. Now
we will express the value P (−1) through basic parameters of Dn. Denote by
𝛽even and 𝛽odd the number of even numbers and odd numbers in the
sequences 𝛽1, 𝛽2, . . . , 𝛽s respectively. Also, denote by 𝛾even and 𝛾odd the
number of even numbers and odd numbers in the sequence 𝛾1, 𝛾2, . . . , 𝛾t . It
easy to see that s = 𝛽even + 𝛽odd and t = 𝛾even + 𝛾odd . Since
P (z) = A(z)A(z−1) − B (z)B (z−1) by direct calculations we get

P (−1) = A(−1)2 − B (−1)2 = 4(2𝛽odd + 𝛾even) (2𝛽odd + 𝛾odd ).

As consequence, we have P (−1) = 4𝜉 = 𝛿(2𝜔)2, where 𝛿 is square free part
of 𝜉 and 𝜔 is some integer.
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Arithmetical properties of complexity for the graph Dn

By formula (2) we have n 𝜏(n) = t
∏n−1

j=1 𝜆j ,1𝜆j ,2. Note that

𝜆j ,1𝜆j ,2 = P (𝜀jn) = P (𝜀n−jn ) = 𝜆n−j ,1𝜆n−j ,2. Define c (n) =
n−1
2∏

j=1
𝜆j ,1𝜆j ,2, if n is

odd and d (n) =
n
2−1∏
j=1

𝜆j ,1𝜆j ,2, if n is even. Following [?] we note that each

algebraic number 𝜆i ,j comes into both products
∏(n−1)/2

j=1 𝜆j ,1𝜆j ,2 and∏n/2−1
j=1 𝜆j ,1𝜆j ,2 with all of its Galois conjugate elements. Therefore, both

products c (n) and d (n) are integer numbers. Moreover, if n is even we get
𝜆 n

2 ,1𝜆
n
2 ,2 = P (−1). Now, we have

1◦ n 𝜏(n) = t c (n)2 if n is odd,
2◦ n 𝜏(n) = t P (−1) d (n)2 = 4t 𝛿 𝜔2 d (n)2 if n is even.
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Arithmetical properties of complexity for the graph Dn

Note that using formula (5) from the proof of Theorem 2 we conclude that
𝜏 (n)
n t is an integer. Indeed, since P̃ (z) and P (z) share the roots we have

𝜏(n) = (−1)r (n−1)𝜂n−1n t
∏

P̃ (z )=0
z≠1

zn − 1
z − 1

.

The last product is equal to resultant of two integer polynomials P̃ (z )
(z−1)2 and

zn−1
z−1 and, hence, it is an integer number. So that 𝜏 (n)

n t is also an integer.
We get
1◦ 𝜏 (n)

n t = ( c (n)n )2 if n is odd,

2◦ 𝜏 (n)
n t = 𝛿 ( 2𝜔 d (n)

n )2 if n is even.

As 𝜏 (n)
n t is an integer and 𝛿 is square free, all squared rational numbers in 1◦

and 2◦ are integers. We set a(n) = c (n)
n if n is odd and a(n) = 2𝜔 d (n)

n if n is
even. This proves the theorem.
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Asymptotic formulas for the number of spanning trees

In this section devoted to the asymptotics for the number of spanning trees
in the graph

Dn = Cay (Dn, b
±𝛽1 , b±𝛽2 , . . . , b±𝛽s , ab𝛾1 , ab𝛾2 , . . . , ab𝛾t ).

To do this we suppose that parameters 𝛽1, . . . , 𝛽s , 𝛾1, . . . , 𝛾t are fixed, and
the inequalities 0 < 𝛽1 < 𝛽2 < · · · < 𝛽s <

n
2 and

0 ≤ 𝛾1 < 𝛾2 < · · · < 𝛾t ≤ n − 1 hold for all sufficiently large values n. We
suppose also that graphs Dn are connected.
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Asymptotic formulas for the number of spanning trees

Theorem 5
Let Dn = Cay (Dn, b

±𝛽1 , b±𝛽2 , . . . , b±𝛽s , ab𝛾1 , ab𝛾2 , . . . , ab𝛾t ) be an infinite
family of connected graphs. Then the asymptotic behaviour for the number
of spanning trees 𝜏(n) for the graph Dn is given by the formula

𝜏(n) ∼ n t

q
An, n → ∞,

where A = exp

(
1∫

0
logP (e2𝜋it)dt

)
and q = 2t

∑s
j=1 𝛽

2
j +

∑
1≤j<k≤t (𝛾j − 𝛾k )2.

Alexander Mednykh (IM SO RAN) On the spetrum and complexity of Cayley graphs on a dihedral group15 July – 19 July 2024 29 / 38



Asymptotic formulas for the number of spanning trees

By Theorem 3 we have 𝜏(n) = n t |𝜂 |n
q

r−1∏
j=1

|2T (n,wj ) − 2|, where

wj , j = 1, 2, . . . , r − 1 are roots, different from 1, of the Chebyshev transform
of P (z).
By Lemma 3, T (n,wj ) =

znj +z
−n
j

2 , where the zj and 1/zj are roots of the
polynomial P (z) with the property |zj | ≠ 1, j = 1, 2, . . . , r − 1. Replacing zj
by 1/zj , if it is necessary, we can assume that |zj | > 1 for all
j = 1, 2, . . . , r − 1. Then T (n,wj ) ∼ 1

2z
n
j and |2T (n,wj ) − 2| ∼ |zj |n as

n → ∞. Hence

n t |𝜂 |n
q

r−1∏
j=1

|2Tn (wj ) − 2| ∼ n t |𝜂 |n
q

r−1∏
j=1

|zj |n =
n t

q
|𝜂 |n

∏
P (z )=0,
|z |>1

|z |n =
n t An

q
,

where A = |𝜂 | ∏
P (z )=0, |z |>1

|z | is the Mahler measure of the polynomial P (z).

By definition of Mahler measure, we have A = exp
(∫ 1

0 log |P (e2𝜋it) |dt
)
.

The theorem is proved.
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Generating function for the number of spanning trees

In this section, our aim is to prove the following result.

Theorem 6
Let 𝜏(n) be the number of spanning trees in the graph Dn. Then

F (x) =
∞∑
n=1

𝜏(n)xn is a rational function with integer coefficients. Moreover,

F (𝜂 x) = F ( 1
𝜂 x ), where 𝜂 is the leading coefficient of the associated

polynomial P (z). The latter allows to represent F (x) as a rational function
of u = 1

2 (𝜂 x + 1
𝜂 x ).
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Generating function for the number of spanning trees

The proof of Theorem 6 is based on the following proposition earlier proved
by authors.

Proposition 1
Let R (z) be a degree 2s polynomial with integer coefficients. Suppose that
all the roots of the polynomial R (z) are 𝜉1, 𝜉2, . . . , 𝜉2s−1, 𝜉2s . Then

F (x) =
∞∑︁
n=1

(
n

2s∏
j=1

(𝜉nj − 1)
)
xn

is a rational function with integer coefficients.
Moreover, if 𝜉j+s = 𝜉−1

j , j = 1, 2, . . . , s , then F (x) = F (1/x).
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Generating function for the number of spanning trees

Proof of Theorem 6. By formula (6) we have

F (x) =
∞∑︁
n=1

𝜏(n)xn =

∞∑︁
n=1

( (−1)r (n−1)+1n t 𝜂n

q

∏
P (z )=0
z≠1

(zn − 1)
)
xn.

Since all the roots of P (z), different from 1, are z1, 1/z1, . . . , zr−1, 1/zr−1,

we can rewrite the latter as

F (x) = (−1)−r+1t
q

∞∑︁
n=1

(
n

r−1∏
j=1

(znj − 1) (z−nj − 1)
)
((−1)r𝜂 x)n.

Since t and q are rational numbers, by Proposition 1, F (x) is a rational
function with integer coefficients satisfying F ((−1)r𝜂 x) = F ( 1

(−1)r 𝜂 x ).
Hence, F (𝜂 x) = F ( 1

𝜂 x ).
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Example 1. Prism graph Dn = Cay (Dn, b
±1, a).

1◦. The number of spanning trees. The associated Laurent polynomial
and its Chebyshev transform are

P (z) = z−2 − 6z−1 + 10 − 6z + z2 and Q (w ) = 4(w − 2) (w − 1).

Here t = 1, 𝜂 = 1, q = 2. Hence, by Theorems 2 and 3 we have

𝜏(n) = n t 𝜂n

q
(2T (n, 2) − 2) = n(T (n, 2) − 1).

This coincides with the well-known result.

2◦. The asymptotics of 𝜏(n). By Theorem 5, 𝜏(n) � n
2A

n, where
A = 2 +

√
3.
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Example 1. Prism graph Dn = Cay (Dn, b
±1, a).

3◦. The generating function of 𝜏(n). Theorem 6 gives

F (x) =
∞∑︁
n=1

𝜏(n)xn =
−3 + u + u2

2(−2 + u)2(−1 + u) ,

where u = 1
2 (x + 1

x ).

4◦. Divisibility by squares. To see the divisibility by squares, consider a few
terms of generating function

F (x) = x +12x2+75x3+384x4+1805x5+8100x6+35287x7+150528x8+ . . . .

By Theorem 4, we have
𝜉 = (2𝛽odd + 𝛾odd ) (2𝛽odd + 𝛾even) = (2 · 1) (2 · 1 + 1) = 6. Hence, 𝛿 = 6. So
that there exists an integer sequence a(n) such that 𝜏(u) = n a(n)2 if n is
odd and 𝜏(u) = 6n a(n)2 if n is even.
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Example 2. Dihedral graph
Dn = Cay (Dn, b

±1, b±2, ab, ab3, ab5).

1◦. The number of spanning trees. By Theorem 2

𝜏(n) = n t 𝜂n

q
| (−2)n − 1| · | (−1/2)n − 1| · | (4 −

√
15)n − 1| · | (4 +

√
15)n − 1|,

where t = 3, 𝜂 = 2, q = 54. Equivalently, by Theorem 3 we get

𝜏(n) = n 2n

18
|2T (n,−5

4
) − 2| · |2T (n, 4) − 2|.

2◦. The asymptotics of 𝜏(n). By Theorem 5, we have 𝜏(n) � n
18A

n, where
A = 4(4 +

√
15).
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Example 2. Dihedral graph
Dn = Cay (Dn, b

±1, b±2, ab, ab3, ab5).

3◦. The generating function of 𝜏(n). From Theorem 6, we get

F (x) =
∞∑︁
n=1

𝜏(n)xn =
R (x)
S (x)

where

R (x) = 6(−1745300 + 4540750u − 3003815u2 + 346990u3 + 171265u4−

−47660u5 + 4840u6 − 272u7 + 16u8)

and
S (x) = (2 + u) (8 + u)2(−5 + 2u)2(265 − 80u + 4u2)2.

Everywhere u = 1
2 (2x + 1

2x ).
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Example 2. Dihedral graph
Dn = Cay (Dn, b

±1, b±2, ab, ab3, ab5).

4◦. Divisibility by squares. To see the divisibility by squares we consider a
few terms of generating function

F (x) = 3x + 60x2 + 6561x3 + 192000x4 + 9149415x5 + 315059220x6 + · · · .

By Theorem 4, we have
𝜉 = (2𝛽odd + 𝛾odd ) (2𝛽odd + 𝛾even) = (2 · 1 + 3) (2 · 1 + 0) = 10. Hence,
𝛿 = 10. So that there exists an integer sequence a(n) such that
𝜏(u) = 3n a(n)2 if n is odd and 𝜏(u) = 30n a(n)2 if n is even.
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