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Classical limit and Deformation Quantisation

Deformation quantisation (deformation of the multiplication):

f · g −→ f ⋆ g = f · g + ℏ(f , g)1 + ℏ2(f , g)2 + · · ·

f ⋆ g − g ⋆ f = iℏ{f , g}+O(ℏ2).

Issues:
▶ Canonical transformations – a choice of canonical variables.
▶ Associativity of the deformed non-commutative multiplication.
▶ Consistency of the algebra with the equations of motion for finite ℏ.
▶ Ordering of operators in the Hamiltonian and other observables.



Quantum and Poisson pencil

Uncharted territories:
▶ Quantisation of systems admitting a multi-Hamiltonian structure.
▶ Can we define a non-deformation quantisation?



Problem of quantisation, quantisation ideals

Fact: Any finitely generated associative algebra can be realised as a
quotient of a free algebra A over an appropriate two sided ideal J.

In Algebraic Quantisation, the problem of quantisation of a free associative
dynamical system (i.e. a derivation ∂t : A 7→ A) can be formulated as:

To find a two sided ideal J ⊂ A such that
A. ∂t(J) ⊆ J ⇔ the derivation ∂t induces a derivation of the quotient

algebra A⧸J.
B. The quotient algebra A⧸J has an additive basis of normally ordered

monomials. In other words, we know how to change the order of any
two variables.

An ideal J satisfying the conditions A, B is called a quantisation ideal and
the corresponding quotient algebra A⧸J a quantum algebra.

Application to a classical dynamical system with commutative variables:

Step #0: To lift the dynamical system to a free algebra.



Problem of quantisation, quantisation ideals

The method was successfully applied to:
Volterra, Bogoyavlensky, Toda, Ablowitz-Ladik hierarchies
(S.Carpentier, J.P.Wang, AVM),
Euler top and Zhukovsky-Volterra top (AVM, T.Skrypnyk)
Stationary KDV and Novikov’s hierarchies (V.M.Buchstaber, AVM)

Example: Volterra type equation:
dxℓ

dt2
= xℓx2

ℓ+1 − x2
ℓ−1xℓ + x2

ℓ xℓ+1 − xℓ−2xℓ−1xℓ + xℓxℓ+1xℓ+2 − xℓ−1x2
ℓ

on a free algebra A = ⟨. . . , x−1, x0, x1, . . .⟩ ideal I ⊂ A

I = ⟨xnxm − ωn,mxmxn ; n > m ⟩.
The ∂t–stability condition ∂tJ ⊂ A give rise a system of equations on the
parameters ωn,m which has two solutions

J (1)(ω) = ⟨xn+1xn − ωxnxn+1, xnxm − xmxn ; |n − m| > 1⟩;

J (2)(ω) = ⟨xn+1xn − (−1)nωxnxn+1, xnxm + xmxn ; |n − m| > 1⟩

On the quantum algebras A(1)
ω = A/J (1)(ω) and A(2)

ω = A/J (2)(ω) we have
dxℓ

dt2
=

1
ω2 − 1

[H, xℓ], H =
∑
k∈Z

x2
k + xk+1xk + xk xk+1.



Motivating example: A simple system on the quantum plane

The quantum plane: Aq = C(q)⟨x , y⟩/⟨yx − qxy⟩. Hamiltonian:

Ĥ = (y − qx)2 = y2 − q(q + 1)xy + q2x2 ∈ Aq

the Heisenberg equation

dx
dt

=
1

q2 − 1
[Ĥ, x ] = xy2 − qx2y ,

dy
dt

=
1

q2 − 1
[Ĥ, y ] = · · ·

In the classical limit q = 1 + ν → 1, Aq → A = C[x , y ], (ν = iℏ)

{a, b} = lim
ν→0

1
ν
[a, b] = (

∂a
∂y

∂b
∂x

− ∂b
∂y

∂a
∂x

)xy , a, b ∈ C[x , y ].

dx
dt

=
1

q2 − 1
[Ĥ, x ] → xy2 − x2y = {H, x}, H =

1
2
(y − x)2

In the limit: q → −1, Aq → A = C⟨x , y⟩/⟨yx + xy⟩, and Ĥ → (x2 + y2)

dx
dt

=
1

q2 − 1
[Ĥ, x ] → xy2 + x2y ?!

= {H; x}, H =?!



Volterra type hierarchy

Volterra type system on the algebra Aq := C(q)⟨xi ; i ∈ Z⟩/Jq

Jq = ⟨xi+1xi − (−1)iq xixi+1, xixj + xjxi ; i , j ∈ Z, |i − j | > 1⟩.

dxℓ

dt2
=

1
q2 − 1

[Ĥ2, xℓ] = xℓx2
ℓ+1−x2

ℓ−1xℓ+x2
ℓ xℓ+1−xℓ−2xℓ−1xℓ+xℓxℓ+1xℓ+2−xℓ−1x2

ℓ

Ĥ2 =
∑
k∈Z

(
x2

k + (1 + (−1)k q)xk xk+1

)
There is a quantum hierarchy of symmetries (SC,AVM,JPW):

dxℓ

dt2m
=

1
q2m − 1

[Ĥ2m, xℓ], [Ĥ2m, Ĥ2n] = 0.

There is a well defined limit q → 1:

Aq → A = C⟨. . . , x−1, x0, x1, . . .⟩/⟨xi+1xi − (−1)ixixi+1, xixj +xjxi ; |i − j | > 1⟩.

What Poisson structure, Hamiltonian derivations, if any, correspond to this
limit? Can we present this hierarchy on A in the Hamiltonian form:

dxℓ

dt2m
= {H2m; xℓ}, {H2m,H2n} = 0 ?



Definition of Poisson algebra

Definition
Let A be any (unitary) associative algebra over a commutative ring R. A
skew-symmetric R-bilinear map {· , ·} : A×A → A is said to be a Poisson
bracket on A when it satisfies the Jacobi and Leibniz identities: for all
a, b, c ∈ A,

(1) {{a, b} , c}+ {{b, c} , a}+ {{c, a} , b} = 0 , (Jacobi identity),
(2) {a, bc} = {a, b} c + b {a, c} , (Leibniz identity).

(A, {· , ·}) or (A, ·, {· , ·}) is then said to be a Poisson algebra (over R).
When A is commutative one says that the Poisson algebra (A, {· , ·}) is
commutative.

Any associative algebra A has a natural Poisson bracket, given by the
commutator {a, b} := [a, b]. Thus, (A, [·, ·]) is a Poisson algebra.



Some noncommutative history remarks

1998: Farkas and Letzter proved that for any prime Poisson algebra A, which is
not commutative, the Poisson bracket must be the commutator in A, up to an
appropriate scalar factor.

2004: Van den Bergh introduced double Poisson bracket {{·, ·}} : A×A → A⊗A
satisfying a modified skew-symmetry condition and modified Jacobi identity, and
defined a double Poisson algebra.

2005: Crawley-Boevey studied non-commutative Poisson structures
2007: Crawley-Boevey, Etingof and Ginzburg introduced double derivations and
Hamiltonian reductions

1998: Olver and Sokolov, 2000: Olver and Wang introduced and studied
Hamiltonian structure of integrable PDEs on free associative algebras

2000: AVM and Sokolov introduced and studied Hamiltonian structure of ODEs
on free associative algebras and “Poisson brackets” on A♮ = A/[A,A].

2019: De Sole, Kac, Valeri and Wakimoto introduced Local and Non-local
Multiplicative Poisson Vertex Algebras.

Kontsevich, Efimovskaya, Wolf, Chalykh, Fairon, Casati, Wang, ...

[Just appeared in arXiv, May 28, 2024 ]: Reshetikhin with Liashyk and Sechin.



Formal deformation (A[[ν]], ⋆) of and associative algebra A

Let A be any associative algebra over R.
A[[ν]], the R[[ν]]-module of formal power series in ν. Any element
A ∈ A[[ν]] can be written in a unique way as

A = a0 + νa1 + ν2a2 + · · · , ai ∈ A .

Definition
Suppose that A[[ν]] is equipped with the structure of an associative algebra
over R[[ν]], with product denoted by ⋆. Then (A[[ν]], ⋆), or simply A[[ν]], is
said to be a (formal) deformation of A if for any a, b ∈ A,
a ⋆ b = ab +O(ν), i.e., a ⋆ b − ab ∈ νA[[ν]].
⇔
Under the natural identification of A with A[[ν]]/νA[[ν]] the canonical
projection π : (A[[ν]], ⋆) → (A, ·) is a morphism of algebras.
Here π can be seen as evaluation at ν = 0.

The commutator in A[[ν]] is denoted by [A,B]⋆ := A ⋆ B − B ⋆ A.

The R-bilinear maps (·, ·)i , {· , ·}i : A×A → A are defined by

a ⋆ b = ab + ν(a, b)1 + ν2(a, b)2 + · · · , a, b ∈ A ⊂ A[[ν]]
[a, b]⋆ = [a, b] + ν {a, b}1 + ν2 {a, b}2 + · · · , {a, b}i = (a, b)i − (b, a)i .



Poisson subalgebra, ideal and quotient algebra

▶ When (A, {· , ·}) is a Poisson algebra and B is a subalgebra of A which
is also a Lie subalgebra of (A, {· , ·}), then (B, {· , ·}) is a Poisson
algebra; we say that (B, {· , ·}) is a Poisson subalgebra of A.

▶ Similarly, if I is an ideal of A which is also a Lie ideal of (A, {· , ·})
then I is a Poisson ideal of A and A/I is a Poisson algebra; we say
that it is a quotient Poisson algebra of A.

Example: Let A[[ν]] be a deformation of a commutative R-algebra A.

(A[[ν]], [·, ·]⋆) is the corresponding natural Poisson algebra.[
A[[ν]],A[[ν]]

]
⋆
⊂ νA[[ν]]. Thus (A[[ν]], [·, ·]ν) is a Poisson algebra, where

the bracket [A,B]ν = 1
ν
[A,B]⋆ is well defined.

The ideal νA[[ν]] ⊂ (A[[ν]], [·, ·]ν) is also a Lie ideal:[
νA[[ν]],A[[ν]]

]
ν
=

[
A[[ν]],A[[ν]]

]
⋆
⊂ νA[[ν]].

Thus A[[ν]]/νA[[ν]] = A is a Poisson algebra with the Poisson bracket

{a, b} = {a, b}1

(
= lim

ν→0

a ⋆ b − b ⋆ a
ν

)
.



Deformation of a noncommutative algebra A and Poisson structures

Algebra A which is not necessarily commutative, and Z (A) is its centre.
A[[ν]] is a deformation of A and (A[[ν]], [·, ·]⋆) is its natural Poisson algebra.
Since

[
A[[ν]],A[[ν]]

]
⋆
⊂ A[[ν]], and not νA[[ν]], we cannot introduce [·, ·]ν .

We define Hν = Z (A) + νA[[ν]]. Quantum Hamiltonians live in Hν .

We proved the following statements:
▶ Hν is a Poisson subalgebra of (A[[ν]], [·, ·]⋆), i.e. [Hν ,Hν ]⋆ ⊂ Hν .
▶ (Hν , [·, ·]ν) is a Poisson algebra, i.e.

[Hν ,Hν ]⋆ ⊂ νHν ⇔ {Z (A),Z (A)}1 ⊂ Z (A).
▶ ν2A[[ν]] is a Poisson ideal of (Hν , [·, ·]ν).
▶ Hν/ν

2A[[ν]] ≃ Z (A)×A is a (noncommutative) Poisson algebra.
▶ νHν is a Poisson ideal of (Hν , [·, ·]ν).
▶ Hν/νHν ≃ Z (A)× A

Z (A)
is a commutative Poisson algebra.



Commutative Poisson algebra Π(A) = Z (A)× A
Z (A)

A ∈ Hν = Z (A)+νA[[ν]] ⇒ A = a0+νa1+ν2a2+· · · , a0 ∈ Z (A), a1, a2, . . . ∈ A.

πΠ : Hν/νHν → Π(A) := Z (A)× A
Z (A)

(
Canonical projection

)
.

A ∈ Π(A) ⇒ A = (a0, a1 + Z (A)) = (a0, a1), a0 ∈ Z (A), a1 ∈ A

Proposition
(Π(A), {· , ·}) is a commutative Poisson algebra with associative
multiplication · and Poisson bracket {· , ·}:

(a, a1) · (b, b1) =
(

ab, ab1 + a1b + (a, b)1

)
,{

(a, a1), (b, b1)
}
=

(
{a, b}1 , {a, b}2 + {a1, b}1 + {a, b1}1 + [a1, b1]

)
,

for all (a, a1), (b, b1) ∈ Π(A).

When A is commutative, Z (A) = A and Hν = A[[ν]]

Π(A) ≃ Hν/νHν ≃ A[[ν]]/νA[[ν]] ≃ A , {· , ·} = {· , ·}1 .



Heisenberg and Hamiltonian derivations

The Heisenberg derivation δĤ : A[[ν]] → A[[ν]]:

δĤ(a) :=
1
ν
[Ĥ, a]⋆

with Ĥ = H0 + νH1 + ν2H2 + · · · ∈ A[[ν]] is well defined (admits a finite
limit, as ν → 0, for any a ∈ A) if and only if H0 ∈ Z (A).

Thus Ĥ ∈ Hν , and

lim
ν→0

δĤ(a) = lim
ν→0

1
ν
[H0 + νH1 + ν2H2 + · · · , a]⋆ = {H0, a}1 + [H1, a].

For H = (H0,H1) ∈ Π(A) we define a Hamiltonian derivation ∂H : A → A

∂H(a) = {H0, a}1 + [H1, a].

We have shown that A is a Poisson module over (Π(A), ·, {· , ·}), with
actions given for (a, a1) ∈ Π(A) and b ∈ A by

(a, a1) · b = b · (a, a1) = ba = ab , {(a, a1); b} = {a, b}1 + [a1, b] .



Definition of Poisson module

Definition
Let (A, ·, {· , ·}) be a Poisson algebra over R and let M be an R-module.
Then M is said to be a A-Poisson module (or Poisson module over A or over
(A, {· , ·})) when M is both a (A, ·)-bimodule and a (A, {· , ·})-Lie module,
satisfying the following derivation properties: for all a, b ∈ A and m ∈ M,

{a ; b · m} = {a, b} · m + b · {a ;m} ,
{a ;m · b} = m · {a, b}+ {a ;m} · b ,
{a · b ;m} = a · {b ;m}+ {a ;m} · b .

In the above formulas, the three actions of A on M have been written a · m,
m · a and {a ;m} for a ∈ A and m ∈ M. In this notation, the fact that M is
a A-bimodule (respectively a (A, {· , ·})-Lie module), takes the form

a · (b · m) = (a · b) · m , (m · a) · b = m · (a · b) , a · (m · b) = (a · m) · b ,

{{a, b} ;m} = {a ; {b ;m}} − {b ; {a ;m}} ,

for a, b ∈ A and m ∈ M.



Non-Abelian Hamiltonian Equations

In our setting, let a Hamiltonian H = (H0,H1) ∈ Π(A) and a ∈ A. Then the
corresponding non-Abelian Hamiltonian equation on A is defined as

da
dt

= {H ; a} = {H0, a}1 + [H1, a].

Proposition
Suppose that F = (F0,F1),G = (G0,G1) ∈ Π(A). Then

∂F∂G − ∂G∂F = ∂{F,G}.

In particular, if F and G are in involution, {F,G} = 0, their associated
derivations ∂F and ∂G of A commute.

We have two types of derivations:

∂H = {H ; ·} : A → A, and ∂′
H = {H , ·} : Π(A) → Π(A)

When A is not commutative, these derivations are defined on different
algebras and none of the two determines the other one.

When A is commutative, ∂H and ∂′
H are both derivations of A and ∂H = ∂′

H.



The advantage of having a commutative Poisson algebra and module

In the case of a commutative Poisson algebra (Π(A), {· , ·}) generated by
the set X1, . . . ,XM , it is sufficient to find the Poisson brackets {Xi ,Xj}.
Then for any P,Q ∈ Π(A)

{P,Q} =
M∑

i,j=1

∂P
∂Xi

∂Q
∂Xj

{Xi ,Xj} .

To compute Hamiltonian derivations, it is sufficient to find the table
∂Xi (yk ) = {Xi ; yk}, where y1, . . . are generators of the algebra A.



Example: quantum plane at q = −1 + ν

Quantum plane:

Aq =
C(q)⟨x , y⟩
⟨yx − q xy⟩ .

If qN ̸= 1 for some N ∈ N, then Z (Aq) = C.

Quantum plane at q = −1 + ν

C[[ν]]⟨x , y⟩
⟨yx − (ν − 1)xy⟩ ≃ A[[ν]] , where A :=

C⟨x , y⟩
⟨yx + xy⟩ .

The product ⋆ on A[[ν]] is defined by
y⋆x = (ν−1)x⋆y = (ν−1)xy , (x , y)1 = 0, (y , x)1 = xy , (x , y)k = (y , x)k = 0, k ⩾ 2,

and associativity.

A is generated by x , y , satisfying the condition yx = −xy .
Z (A) is generated by x2, y2.
A/Z (A) is generated as a Z (A)-module by x , y and xy .
Π(A) is generated by 5 elements:

X =
(

x2, 0
)

, Y =
(

y2, 0
)

, U = (0, x) , V = (0, y) , W = (0, xy) ,



Example: quantum plane at q = −1 + ν

X =
(

x2, 0
)

, Y =
(

y2, 0
)

, U = (0, x) , V = (0, y) , W = (0, xy) ,

Π(A) ≃ C[X ,Y ,U,V ,W ]/⟨U2,V 2,W 2,UV ,VW ,UW ⟩.

Poisson brackets between the generators of Π(A):

{· , ·} X Y U V W

X 0 4X · Y 0 2X · V 2X · W

Y −4X · Y 0 −2U · Y 0 −2Y · W

U 0 2U · Y 0 2W 2X · V

V −2X · V 0 −2W 0 −2Y · U

W −2X · W 2Y · W −2X · V 2Y · U 0



Example: quantum plane at q = −1 + ν

In the Π(A)-Poisson module A we have:

· x y

X x3 x2y

Y xy2 y3

U 0 0

V 0 0

W 0 0

{· ; ·} x y

X 0 2x2y

Y −2xy2 0

U 0 2xy

V −2xy 0

W −2x2y 2xy2

Ĥ = − 1
2 − ν

(y2 − ν(−1 + ν))xy + (−1 + ν)2x2)

H = −1
2
(x2 + y2, xy) = −1

2
(X + Y + W ),

dx
dt

= {H; x} = xy2 + x2y .



What is integrability of non-Abelian Hamiltonian systems?

In the commutative classical world, a Hamiltonian system in RN is Liouville
integrable if it has n functionally independent first integrals H1, . . .Hn in
involution {Hp,Hk} = 0, 1 ⩽ p, k ⩽ n and N − 2n functionally independent
Casimir elements of the Poisson bracket.

In the corresponding quantum system, the integrability is often identified
with the existence of n commuting and algebraically independent elements
of the quantum algebra Aℏ and N − 2n generators of its center Z (Aℏ).

It is evident that the central elements of A[[ν]] give rise to Casimir elements
within the Poisson algebra Π(A). It would be logical to propose
a definition of integrability for a non-Abelian Hamiltonian system,
requiring the existence of n algebraically independent elements Hk ∈ Π(A)
in involution {Hp , Hk} = 0, 1 ⩽ p < k ⩽ n, along with N − 2n independent
Casimir elements within the Poisson algebra Π(A).

The problem of solutions for non-Abelian Hamiltonian systems is wide open.
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